[AMO93]
R. K. Ahuja, T. L. Magnanti, and J. B. Orlin.
Network Flows: Theory, Algorithms, and Applications.
Prentice Hall, 1993.
[AO1989]
R. K. Ahuja and J. B. Orlin.
A fast and simple algorithm for the maximum flow problem.
Operations Research, 37(5):748–759, 1989.
[AOS94]
R. K. Ahuja, J. B. Orlin, and C. Stein.
Improved algorithms for bipartite network flow.
SIAM J. Comput., 23(5):906–933, 1994.
[Buzan]
T. Buzan.
Use Both Sides of Your Brain.
Plume; 3rd edition, 1991.
[BuzanMM]
T. Buzan.
Mentální mapování.
Port\’al, 2007.
[Chazelle2000:MST]
B. Chazelle.
A minimum spanning tree algorithm with inverse-ackermann type
complexity.
J. ACM, 47:1028–1047, November 2000.
[Chong2001:MST]
K. W. Chong, Y. Han, and T. W. Lam.
Concurrent threads and optimal parallel minimum spanning trees
algorithm.
J. ACM, 48:297–323, March 2001.
[CCPSCombOpt]
W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver.
Combinatorial optimization.
John Wiley \& Sons, Inc., New York, NY, USA, 1998.
[CormenIntro]
T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson.
Introduction to Algorithms.
McGraw-Hill Higher Education, 2001.
[DPVAlgorithms]
S. Dasgupta, C. Papadimitriou, and U. Vazirani.
Algorithms.
McGraw-Hill Higher Education, 2007.
http://www.cs.berkeley.edu/~vazirani/algorithms.html.
[Diestel05]
R. Diestel.
Graph Theory, volume 173 of Graduate texts in mathematics.
Springer, Berlin, 3rd edition, 2005.
[EricksonLN]
J. Erickson.
Algorithms course materials, 2009.
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms.
[GR1998]
A. V. Goldberg and S. Rao.
Beyond the flow decomposition barrier.
J. ACM, 45(5):783–797, 1998.
[GTT90]
A. V. Goldberg, E. Tardos, and R. E. Tarjan.
Network flow algorithms in Paths, Flows and VLSI-Design (eds. B. Korte, L. Lovasz, H.J.Proemel, and A. Schrijver)}, pages 101–164. Springer Verlag, 1990.
[GT87]
A. V. Goldberg and R. E. Tarjan.
Solving minimum-cost flow problems by successive approximation.
In STOC, pages 7–18. ACM, 1987.
[LNHarPeled]
S. Har-Peled.
Cs473g – graduate algorithms, 2007.
http://www.cs.uiuc.edu/class/fa07/cs473g/lectures.html.
[Howard]
P. Howard.
Příručka uživatele mozku.
Port\’al, s.r.o, 2005.
[KnuthAoCP1]
D. E. Knuth.
The Art of Computer Programming, Volume I: Fundamental Algorithms, 2nd Edition.
Addison-Wesley, 1973.
[KnuthAoCP2]
D. E. Knuth.
The Art of Computer Programming, Volume II: Seminumerical Algorithms.
Addison-Wesley, 1973.
[KnuthAoCP3]
D. E. Knuth.
The Art of Computer Programming, Volume III: Sorting and Searching.
Addison-Wesley, 1973.
[MaresSaga]
M. Mareš.
Graph Algorithms (The Saga of Minimum Spanning Trees).
PhD thesis, Charles University, Prague, Czech Republic, 2008.
http://mj.ucw.cz/papers/saga/.
[MaresKGA]
M. Mareš.
Krajinou grafových algoritmů.
ITI Series, Prague, 2008.
http://mj.ucw.cz/vyuka/ga/.
[MatNes96]
J. Matoušek and J. Nešetřil.
Kapitoly z diskrétní matematiky.
MatfyzPress, 1996.
[MatNesEn]
J. Matoušek and J. Nešetřil.
Invitation to Discrete Mathematics.
Oxford University Press, 1998.
[MatValKG]
J. Matoušek and T. Valla.
Kombinatorika a grafy i., 2005.
http://kam.mff.cuni.cz/~valla/kg.html.
[Pettie2002:MST]
S. Pettie and V. Ramachandran.
An optimal minimum spanning tree algorithm.
J. ACM, 49:16–34, January 2002.
[SCombOpt]
A. Schrijver.
Combinatorial Optimization – Polyhedra and Efficiency.
Springer-Verlag, Berlin, 2008.
[SchrijverLN]
A. Schrijver.
Lecture notes, 2008.
http://homepages.cwi.nl/~lex/.
[Tarjan75:unionfind]
R. E. Tarjan.
Efficiency of a good but not linear set union algorithm.
J. ACM, 22:215–225, April 1975.
[Topfer]
P. T{\“o}pfer.
Algoritmy a programovací techniky.
Prometheus, 1995.